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A numerical solution to the equations for small linearized perturbations of a mean 
zonal flow containing both lateral and vertical shear is investigated using three time 
difference schemes, two of which are discarded. The chosen scheme is weakly unstable. 
The time step has a lower bound as well as the C.F.L. condition upper bound; for 
tied time step and allowable growth rate error, there is an upper bound to the vertical 
resolution for fixed computing time. Total integration time to convergence is speeded 
up by a good choice of initial field and problems of degenerate eigenvalues are overcome 
by a variation of the method whereby only the dominant wave remains. To obtain a 
complete spectrum of eigenvalues, the direct Q.R. method of solution proved far more 
efficient than time integration. 

1. INTRODUCTION 

The global scale transfer of energy and momentum in the earth’s atmosphere is 
brought about mainly by quasi-geostrophic (baroclinic) eddies. The mean flow, 
upon which these eddies are superimposed, is determined by the latitudinal 
variations of temperature (imposed by global-scale variations in net heating) that 
force slow axially-symmetrical adjustments, during which angular momentum is 
conserved and thermal-wind balance for the zonal flow is established. The energy 
transfer due to this meridional circulation is generally small, and the conversion of 
latent into sensible energy and the creation of thermal-wind balance are its most 
important properties. More detailed discussion can be found in [4, 8, lo], but the 
general inference is that the intensity and structure of the zonal circulation is 
determined by the horizontal gradient of temperature. This gradient is in turn 
determined by the temperature contrast that the baroclinic eddies need in order to 
relax the radiatively determined energy imbalance by large-scale horizontal heat 
transport. 

The generation of the eddies can be studied as the amplification of small 
amplitude perturbations on a given mean zonal flow, during which phase the 
characteristic scale and structure of the eddies is determined. Such definition of 
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structure is of fundamental importance for the parametric representation of the 
eddy transfer (their momentum transfer being particularly subtle). The object of 
this work was to determine the structure of the perturbation solutions for fairly 
realistic zonal mean winds in order to supplement the information gained from 
classical studies [2,3, 71 that treat only highly idealized states. 

There is, however, a second field of application, for the problem of numerical 
weather prediction is largely concerned with calculating the growth, speed, and 
scale of newly developing large-scale systems within which the samller-scale 
processes of weather (such as frontal zones) develop. Clearly the viable represen- 
tation of the perturbation solutions is a necessary, though not sufficient, criterion 
for such prediction schemes, and the general impression is that only those schemes 
with extremely high resolution come anywhere near representing the analytically 
defined fluid dynamics in this respect. 

This then is the aim of the study: to determine the structure of the growing 
waves and to comment on the effects of truncation in finite-difference represen- 
tations. The second of these aims will be treated here, the first reported on in a 
meteorological context. 

The motion is assumed to be adiabatic, the horizontal flow is assumed nearly 
geostrophic, and the variation of Coriolis parameter with latitude is taken into 
account only where it is differentiated. Consistently, a tangent-plane approximation 
to the earth’s spherical geometry is used, with rigid walls at the equator and at the 
polar limit of the system that correspond to a latitude of about 60” on the earth 
(the “quasi-geostrophic beta-plane” approximation). A rigid lid replaces the 
tropopause and the variation of mean density with height is neglected (the effect of 
these on amplifying waves being fairly well known [7]). The initial zonal velocity 
is in general a function of both height and latitude, in which respect the study 
represents a generalization of the classical studies in which the zonal velocity is 
supposed a function of height only. 

2. BASIC EQUATIONS 

Scale analysis shows that if the relative accelerations are much smaller than the 
Coriolis accelerations (small Rossby number), then the motion satisfies the 
quasi-geostrophic vorticity equation [7] 

with D/Dt, = differentiation following horizontal motion; 5 = vertical com- 
ponent of relative vorticity; v = south-+north velocity; /I = L-j-j/+, variation of 
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Coriolis parameter with latitude; z = height above sea level (strictly geopotential 
height); and w  = vertical velocity. 

To the same order of approximation, the continuity equation is 

with u = west-east velocity. This implies a streamfunction Y with ZJ = -a??‘/+, 
v = ZP/ax, and 5 = !PX, + ul,, . 

Small perturbations are made from an initial state where pressure, density, and 
entropy are functions of height and latitude only and where the initial flow is 
zonal U,(v, z). 

With the thermodynamic equation for dry adiabatic motion 

where @ is the log potential temperature, and for perturbations, $(x, y, z) ol 
entropy and $(x, y, z, t) of streamfunction. Hydrostatic and thermal-wind balance 
for the perturbed flow demands that the vertical variation of velocity and the 
temperature be connected: 

(j me& 
g az 

and the equations reduce to the linearized form 

where B = a@@~, the static stability. Eq. (4) is to be solved in a region 

with L = representatitive distance between pole and equator, taking account of 
the diminished area of the polar cap; and H = depth of the troposphere. 

Rigid walls are taken as boundaries at pole, equator, surface, and tropopause, 
implying $ = constant (taken as zero) at y = &L/2 and, 

at z = 0, H 

from Eq. (3). 
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Equations (4) and (5) are the basic equations and boundary conditions to which 
solutions are sought. With #(x, y, z, t) = G( y, z) exp ih(x - Et), they define an 
eigenvalue problem for a given zonal wavelength 27r/X, with eigenvalue C. 
In general, i; is complex and then C = C, + iCi , # = G exp h&t exp ih(x - Z,t), 
where C, represents a phase speed and A& the growth rate. 

3. FORM OF THE EIGENVALUE SPECTRUM 

Solutions in general can be found only by numerical methods since, with U,( y, z), 
solutions are not generally separable. The equations are nondimensionalized to 

(4y)z - c)(NG,, + G,, - v2G) + G(y - N&J = 0 

(A(y)z - c)@G/az) - A(y)G = 0 at z = 0, 1 (6) 
G=O at ~=fl 

with y + (2ylL), z --f (z/H); U,,(u, z) = @A( JJ)Z (where we have put U,, linear 
with height), and c = E/(ol,H), (c = c, + &); where v2 = h2gB/f2, the square of 
the horizontal wavenumber; y = gBH/3/(a, f 2), generalized P-parameter; and 
N = 4gBH2/(f “L2). 

The parameter 01~ is the vertical wind shear at y = 0, so that A(y) is normalized 
to 1 at y = 0. The ratio of vertical to horizontal scales of the flow is represented 
by N1J2. 

To get an impression of the form of the complete eigenvalue spectrum for general 
values of U, , the special case is taken with A(y) = 1, i.e., baroclinic flow with 
U, = 0 and constant shear. The set (6) then reduces to the one-dimensional 
problem whose solution is known from [7]. 

(z - c) (fa - (v2 + N G) f) + yj‘ = 0 

(z - c)fz -f= 0 at z = 0, 1 

where G(y, z) = fm(z) sin ~((1 - y)/2). 
Figures 1 and 2 show the growth rates and phase speeds of the first seven modes, 

using data from Green’s model with y = 1. 
Growing waves exist for all wavelengths, with the fastest growing wave for y1 = 1 

but changing to other modes for longer and shorter waves; the growth rates of all 
modes are similar. 

Solutions to (6) are now sought for general profiles of U by numerical methods. 
In particular, methods of obtaining the fastest growing wave for different wave- 
lengths are examined and compared, as, according to the hypothesis of development 



BAROCLINIC-BAROTYPE INSTABILITY 

0.3 

vci 

02 

O-l 

0 10 V 20 30 

FIG. 1. Growth rate (q) against wavenumber (v) for flow U = z, mode = n, L = 10,000 km. 

FIG. 2. Phase speed (c+.) against wavenumber (v) for flow U = z, mode = II, L = 10,000 km. 

from some initial infinitesimal arbitrary disturbance, these are the ones that will 
eventually dominate the motion. The numerical solution is of special interest 
because all of its difficulties also occur in the numerical prediction of quasi- 
geostrophic motion (although there are more numerical problems in (NWP), 
but the errors incurred can be analyzed fully here. 

4. INTEGRATION FORWARD IN TIME 

By analogy with the weather-prediction problem the linearized wave equation 
can be integrated forward in time and eventually the fastest growing mode will 
dominate. 
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With the transformation t -+ ha,Ht, (or new t equivalent to about t/4 days), 
(4) and (5) transform (with # = F(y, z, t) exp ihx) to 

[ a at + OfUs + AZ)] (NFgy + L - v2F) + iF(y - NzA,, - NMU,,J = 0 

[ 
-f!- at + i(MU, + AZ)] $ - iAF = 0 at z = 0, 1 (8) 

F=O y = +1. 

The method of solution is one of time integration from an initial field 
F(y, z, t = 0). We can suppose that F contains terms like Fv(y, z, t) = 
& Ajag exp -z&t, where ad are the normalized eigenfunctions, cj are the corre- 
sponding eigenvalues, and Aj are the coefficients (found from the initial value of F). 
Eventually, F will grow steadily with a growth rate corresponding to the eigenvalue 
with largest imaginary part. Therefore, with finite-difference replacements to (8) 
and a given value for v, the time integration is performed and terminated when 
values of F at all gridpoints grow at a steady growth rate (the method used in [l]). 
This method of solution is sometimes known as the power method [6]. Here various 
time difference schemes are analyzed for the replacement of aF/at, but spatial 
centered differences replace spatial derivatives. The coordinate y, z is specified by 
the replacement 

y-tkdy- 1 z+(Z- 1)dz 

where dy, dz are horizontal and vertical gridlength, and k, I are the kth and Ith 
gridpoints. 

The variable A is chosen to be symmetric about y = 0, so that the solutions are 
either symmetric or antisymmetric, the former with aF/ay = 0 at y = 0 and the 
latter with F = 0 at y = 0, and the horizontal dimension can be halved. 

The range of y, z in (8) is now 

-1 <y<o even modes 

-1 <y<o odd modes 

--dz<z<l$-dz as aF,Qz appears in the boundary conditions. 

The stability of the time integration is now analyzed for different schemes, and 
their stability examined. It is found that some stable schemes involve too much 
computer time to be of practical use and a scheme that is weakly unstable is chosen. 
The approach is to Fourier analyze in space the error in the solution of the finite- 
difference replacement of (8). For the purpose of this calculation, where advection 
is of major importance, the flow is taken to be constant (independent of y and z). 

At time t = 7 d t, let E( y, z, t) = E, be the error in F. 
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(a) Forward Differences 

With aFfLJt replaced by (F(t + At) - F(t))/At, and with 

(8) implies 

E, = c V7(m, n) exp i(mk dy + nl dz), 
7n.n 

E, = c V,,(l + fcz)r/a exp i(mk .dy + nl dz + T tan-l K) 

7n.n 

with 

YAt 
K = (it + 9) ’ 

i = 4N sin2 m 4 nAz 
Ay2 

2 + & sin2 2 

and approximate K to At. (7 is of the same order as I? + v”.) 
The error grows exponentially and generates error E, in c given by 

(9) 

exp E,t = exp(r/2) log(1 + At2) = exp(t At/2) 

implying EC - (At/2). 

for small At, CW 

Assuming the growth rates for general mean flows are of the same order as those 
shown in Fig. 1, i.e., 4.2, and the maximum allowable error in the numerical 
value of the growth rate is - 50.005 (for u - l), denoted by E, , (9a) implies 
At - t0.02. 

(b) Euler Backward 

Again we have aFlat replaced by (F(t + At) - F(t))/At, but now the integration 
is repeated using the same replacement as above for terms involving aF/at, but 
using computed values of F(t + At) for terms not involving aF/at. This implies a 
scheme 

F* =F(t)+AtzIt 

F(t + At) = F(t) + At -$ I* 

and then (9) is replaced with 

E, = c V,(l + ~~ - ~~~~~~ exp i 
11L.n ( 

mk Ay + nl AZ - T tan-l &) 

which is numerically stable if I K 1 < 1 and all the error is concentrated in the real 
part of the phase speed. This is the C.F.L. condition: At < l/1 U - c, 1, where 
c, = nondimensional Rossby wave speed (Brown [I]). 
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(c) Double and Single DifSerence Scheme [I I] 

Although scheme (b) is stable, the repeated integration needed to advance one 
time step uses a large amount of computer time. To reduce this, a scheme is 
considered whereby the even time steps are advanced by method (b) and the odd 
time steps by method (a). This implies 

EZT = c VO(l + ~~~~~~ exp i 
2K - K3 

mk dy + nl AZ + 7 tan-l -) (10) 
m,n 

and the error in ci is given by E, N (At)5/4. Therefore, with E, - kO.005, 
At - <*. 

This method, although weakly unstable, reduces the integration time by a factor 
of 4 and is used in the following calculations. It is referred to subsequently as the 
DS scheme. 

(d) Centered D$erences 

With aF/at replaced by (F(t + At) - F(t - At))/2At, as is commonly used in 
numerical prediction, and with E, = C V7(m, n) exp i(mk Ay + nl AZ), (8) gives 
V 7+1 = V,-, + 2iKV, and then 

E, = C Y,expi(mkAy+nZAz+~tan-1 (1 TK2)) 
m,n 

+ VI exp i mk Ay + nl Ay - 7 tan-l ( (1 ’ K”) 1 * 

If K < 1, the scheme is stable and the only error will be that found in the initial 
state. However, as the wave we are examining is growing, its amplitude will 
eventually become greater that V,, , VI , and this error will be negligible. 

5. TEMPORAL AND SPATIAL TRUNCATION ERRORS 

(a) Temporal Truncation Error 

The effect of the temporal truncation error on the eigenvalue deduced is 
examined. Expanding F(t + 2At) in a Taylor series and using the DS scheme, the 
truncation error can be found to be O(AP) from Section 4(b). Thus, for expo- 
nentially growing solutions, the numerical error in the amplification rate can be 
shown to be 0(ci2 At2). 

For At N 0.4, ci N 0.1, truncation in time gives an error of about 0.15 ‘A in the 
eigenvalue irrespective of any additional error produced by spatial truncation and 
arithmetic inaccuracies. 
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(b) Spatial Truncation Error 

A guide to the effect of the truncation error in height can be obtained by taking 
a flow with no mean wind, in which case G oc cos nrrz. Neglecting the y-variation 
and putting the finite-difference replacement of G as G*, then 

a2G* a2G + (AZ)2 a4G 
F=F 7-g’ 

With c* the eigenvalue when using G*, c the eigenvalue when using G, (6) becomes 
--c(Gzz - u2G) + yG = 0, replaced by -c*(G,*, - v2G) + yG = 0, and then 

ICC*,,/ (A zy( a4G/ a241 W2 - - 
4! ((a2G/az2) - v2~) - 2.5 

for the 1st mode. 

With AZ N 3, this implies an error of w-1 % in the eigenvalue, which is considerably 
more than that due to the temporal truncation. 

6. ITERATION ERROR 

At each time step it is necessary to solve a Laplacian equation and this was done 
by a relaxation technique. Iteration is terminated when the solution is within 
a given error of the analytic solutions to the set. Let this error be EF (small I E I) 
and consider the error it will produce in the eigenvalue. 

The maximum error is given by 

Therefore, for given EC and / E /, I E I < At EC , and we note that there is, 
surprisingly, a lower bound to the time step. This becomes obvious if we note that 
with a small time step, the iteration error may become of the same magnitude as 
the increment in the eigenfunction. Thus, those temporal integration schemes that 
demand a small time step correspondingly demand accurate spatial solution if 
their accuracy is to be maintained. 

This lower bound for the time step gives a guide to the maximum allowable 
iteration error. Returning to dimensional parameters, 

I E I < h,HATE, 

and At is taken as 1000 sec. Then, with ol,H N 20 msec-1 and X = 2 x 1O-6 m-l 
(for a wavelength of -3000 km) 

/ E 1 < 4.10-2E, , 

and for a 5 % error in ci , I E I < 0.002. 
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Referring back to the various methods of time integration discussed in Section 4, 
the condition that the solution of the finite replacement to (8) must be found 
accurate to EC dt of its analytic (or true) value has the following implications. For 
the forward time integration scheme of Section 4(a), with E, - @t/2) and 
At - 0.02; E, At - 2.10-4. This accuracy is quite unrealistic for the scheme to be 
of practical use while the DS scheme of Section 4(c) requires an accuracy of 
-2. 10-3, which is of reasonable proportions. 

7. THE VERTICAL RESOLUTION 

We now examine the consequences of increasing the resolution and show that 
the tolerance to which the solution must be obtained is proportional to the square 
of the vertical grid length. The finite-difference equations solved at each time step 
can be written as 

2Fk,t = & F’w+I + FL-I) + $(F,+,L + I”,-,,,) - ($ + & + v2) Fk.1 

= k2 G, (12) 

where Fk,l is the value of F at the point (k, I), Gksl is a known combination of Fk,l 
at the previous time step, and (2N/Ay2) + (2/A,?) - v2 = D. 

Typical values of N vary between 0.04 and 1 (for channel widths of 
lO,OOO-2,000 km) and v between 0.5 and 2.5 (for wavelengths of 12,000 km- 
2,500 km). Thus, for small values of AZ (e.g., <l/15, and taking Ay - AZ), D is 
determined to within less than 1 % by the value of v. Therefore, unless (12) is 
solved to a high degree of accuracy at each time step, it will not be possible to 
distinguish changes in solution for small changes in v, and to obtain a meaningful 
spectrum, growth rates and phase speeds must be found accurately enough to 
detect their changes for changes in wavenumber -0.05. 

8. ITERATIVE SOLUTION, TOLERANCE 

A criterion for the termination of the iterative solution is examined in terms 
of the vertical resolution (AZ) using analysis based on [12] where the set (12) is 
solved at each time step by successive overrelaxation (e.g., [13]). 

Let the ith iteration be Ff\ . Then the corresponding residual RF.\ is given by 

Rk), = e!Z’Fz’, - GkeI 

and the (i + 1)th iteration is then 
F(i+l) 

k.1 = F;‘, + &’ ID le.1 
where 01 is the overrelaxation parameter. 

(13) 



BAROCLINIC-BAROTYPE INSTABILITY 11 

and c:\ as 6;: = Fci - Fia ( . , ), the deviation of the ith iterate from the analytic 
solution. 

Then •jj,‘~ = R$ and by expanding ~j$ in a double Fourier series, it can be 
shown (as in [12]) that 

Then if 
(9( I + N) + I+‘) I $; I < I RF,: I. (14) 

I/$$ < a 1 d;!,l (~~(1 + N) + v2)/DF$, (15) 

the iteration has converged to within / $\ 1 of the analytic solution. Eq. (19) 
implies that the residuals in (17) are all small enough for convergence. From 
Section 6, (with E = E(~)/F(~)), I E I -=c E, At for convergence and with v - 2, 
D - 2/A.z2, and 01 - 1, (19) implies 

l/7$, < -(l/2)(4 + n2) EC At Az2 

and if at all gridpoints 7jj.i is less than 77 where 

l/q = -(l/2)(4 + n”) EC dt dz2, W-9 

the iterative has converged sufficiently. The parameter 7 is defined as the tolerance. 
Thus, for given EC At (determined from 4c, i.e., E, - A t5/4), the tolerance criterion 
is 

l/q - (Llz)2. (17) 

I I I I I 
100 200 LOO 800 TOLERANCE 

FIG. 3. Streamfunction at lower boundary mid-latitude (X) against tolerance for U = z 
exp(-2yz), L = 10,000 km, y  = 1 with number of levels (M). Continuous curves for wave- 
number 1.6; dashed curves for wavenumber 1.65. 
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Figure 3 illustrates the convergence of the iteration with differing numbers of 
levels. 

We see from Fig. 3 that the effect of increasing the vertical resolution is an 
increase in the tolerance for convergence, as proposed by (16). If the iteration is 
stopped prematurely, the solution obtained will correspond to the solution at a 
different wavenumber and the eigenvalue spectrum will be distorted. Thus, with 
11 levels (i.e., 9 layers between surface and tropopause), termination of the iteration 
at 7 = 1000 can be interpreted as a wavenumber error of -0.05, which is a sub- 
stantial error in the context of numerical prediction and in the spectrum drawn 
in Fig. 1. 

9. OVERRELAXATION PARAMETER 

Figures 4-6 illustrate the behavior of the parameter 01 in (13) for the flows of 
Fig. 3 for 5, 7, and 9 levels, respectively. A value of 1.3 for 01 appears to be the 
optimum and this was used in the following calculations. 

1.2 1.3 a 11 

FIG. 4. Iterations against over-relaxation factor (CE) and wavenumber (v), five levels, U = 
.z exp(-2yz), L = 10,000 km. 

FIG. 5. As for Fig. 4, with seven levels. 
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12 a !L 

FIG. 6. As for Fig. 4, with nine levels. 

10. ITERATIONS AGAINST TOLERANCE. OPTIMUM RESOLUTION 

Figure 7 shows the variation of tolerance against number of iterations for the 
flow of Fig. 3 for 5, 7, 9, and 11 levels. For fewer levels, there is a large increase in 
tolerance for only a small increase in the number of iterations. As the number of 
levels increases, this becomes less marked. 

iLOO- 

2 lOOO- 

2 
Ei 

$ 600- 

200- 

W’ 
I I 

0 20 30 LO 
ITERATIONS 

FIG. 7. Number of iterations against tolerance for 5, 7, 9, and 11 levels. U = z exp(-2yz), 
L = 10,oookm. 

By combining the results of Figs. 3 and 7 and using 5 x 10-4mn set as the 
computer time needed for one iteration on the m x II grid, an optimum number of 
levels is obtained (there are m - 1 levels). Assuming convergence of the time 
integration to be about 400 repetitions of solving (12) (about 250 time steps) and 
allowing 500 set of time to evaluate one eigenvalue and using n = 10, mI - 250 
(I is number of iterations). 
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For m = 10, 77 - 1,500 (from Fig. 3) and then I - 40 (from Fig. 7), giving 
mI = 400, while for m = 8, v - 900 with I then - 20 and ml = 160. Thus, 
m = 9 (eight levels) will apparently give an optimum for the above computing time 
restrictions. With dt = 6 and using 7 = 1000, (16) implies EC - &O.OOS, which 
is acceptable. 

11. ITERATIONS AGAINST WAVENUMBER. REDEFINED TOLERANCE 

Figure 8 illustrates the effect of wavenumber on the iterative process. There is 
an increase in number of iterations needed to obtain a desired tolerance as the 

FIG. 8. Number of iterations against wavenumber (v) and vertical gridlength (AZ) for tolerance 
400. 

wavenumber decreases. Thus, to obtain very long waves, the optimum of eight levels 
is considerably reduced. 

12. CONVERGENCE FROM AN INITIAL EIGENFUNCTION EXPANSION 

An initial guess of the stream function is made at all gridpoints and (12) is 
solved iteratively at each time step, the iteration being stopped when the appropriate 
tolerance is reached. At each time step, the growth rate at each gridpoint (except 
those with very small function values) is calculated and the time integration stopped 
when the growth rates differ by less than rfE, . Thus, the eigenfunction and related 
eigenvalue (with the largest imaginary part for the fastest growing wave) is found 
at each wavenumber. 
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With reference to Fig. 1, three problems are immediately apparent: (i) At certain 
wavenumbers, cusps occur where two waves grow at the same rate and there is no 
dominant wave. (ii) For very long and very short waves, the growth rates are small, 
so that the time taken for one solution to dominate over the others will be large, 
(iii) The above method will, in any case, only find the dominant wave, and other 
modes will be filtered out. 

To alleviate these problems, consider the following approach: Integrate for 
(2r - 1) time steps (r = mn), each step being 2dt using the DS method of 
Section 4(c), giving 

FT = F(y, z, 27 At), 0<7<2r for wavenumber v. 

Then F, can be written as the sum of eigenfunctions (notice that there will be m x n 
of these, corresponding to the number of roots of the finite-difference characteristic 
equation) as: 

F, = i AjxiT, xj = e--2Wt (18 
j=l 

and the 2r equations (18) can be solved for the 2r unknowns Ai, xj (with the same 
solutions at all gridpoints). A general method of solving (18) is based on an idea 
of Prony [14]. 

Consider the rth order difference equations (0 < T - r < r) 

G,FT + G-1Fv-1 + *-* + GJ-(,q) + F,-, = 0 (19) 

with solution 

where G,Xj’ + G,-&-l + *.. + 1 = 0. (20) 

But (20) is identical to (18) and hence xj are the roots of (20). Therefore, solve (19) 
for the G, , then solve (20) for the xi , and finally, solve (18) for the A, . 

In practice the above method necessitates the solution of a high-order polynomial 
equation at each gridpoint and a variation of the method is considered, 

As the integration proceeds, F, will be dominated by these eigenfunctions with 
large growth-rate and we may assume that, after a certain time, only three modes 
remain. Now r can be taken as 3 and (20) will be cubic. If the integration is carried 
out in sets of six time steps and (18)-(20) are solved at each gridpoint, three waves 
can be found for each wavenumber and the problem of the coincident growth rate 
at the cusps can be eliminated. 

By choosing the initial perturbation to be similar to that of a dominant mode, 
the convergence time of the integration may be speeded up considerably. 

581/23/I-Z 
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13. Two TESTS 

(a) The preceding ideas were tested on a grid with 10 horizontal points and 
8 levels, using the flow used for Figs. 1 and 2 so that results could be compared. 
At all wavenumbers the initial perturbation was assumed to be of the form 

F,,, = 1 + i 

with At = Q, rl * = 1,300, and EC = &0.005. The following wavenumbers were 
used 

v = 0.8, 1.2, 2.0 

where, from Fig. 1, we can see that the fastest growing modes were the fifth, third, 
and first for the symmetric type and fourth, fourth, and second for the anti- 
symmetric type, respectively, for the above wavenumbers. 

The average convergence time was 250 steps, with slower convergence at low 
wavenumbers. The growth rate and phase speed spectra are shown in Figs. 9 and 10. 

I I 
0 10 v 2.0 

FIG. 9. Growth rate (q) against wavenumber (v) for U = z, first five modes by time inte- 
gration. 

0.3 - 

‘, 
0.2 - 

~czf 
3 21 

0.1 - 

I I 
0 I.0 V 2.0 

FIG. 10. Phase speed (c,) against wavenumber (v) for U = z, first five modes by time inte- 
gration. 
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The eigenvalues of the nondominating modes (e.g. third and fifth at v = 2.0) 
were found by using approximate representations of these modes as initial pertur- 
bations, and the convergence time was thereby speeded up to about 120 steps, as 
suggested at the end of Section 12. 

The correlation between Figs. 1 and 9 appears good, although no waves were 
obtained at wavenumbers less than the critical wavenumber at which waves do not 
grow (perhaps the growth rates were too small) and there was some doubt as to 
where the cusps actually occurred (although this would probably have been over- 
come if more wavenumbers were used in the vicinity of a suspected cusp). 

(b) Although the power method was useful for the flow U = z, it may be less 
so for more realistic flows (say) of the form U = z exp -ky2, where growth rates 
of the dominant modes are very much greater than those of secondary modes 
because of the concentration of the sheared zone, and where, for similar reasons, 
at some wavenumbers the growth rate of even the dominant mode may be very 
small, thereby making convergence a long process. 

A test was made on U = ze-2Ya, with y = 1 on the same grid as (a) and the 
eigenvalue spectra obtained are shown in Fig. 11. Convergence was rapid around 
v = 1.8 (about 100 time steps), but for long waves (v N 1.2) convergence was very 
slow (at least 300 steps). For the symmetric mode, another eigenvalue appeared 

0.31 

O.‘L 
05 1.0 1.5 " 2.0 

FIG. 11. Growth rate (q) and phase speed (c,) against wavenumber (v) by time integration. 
U = z exp(-2y2), L = 10,000 km, y  = 1. S is a symmetric mode; A is an antisymmetric mode. 
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at v = 1.4, but the method of trying to obtain this mode at another wavenumber 
but using it as an initial perturbation failed (probably due to its small growth). 

Taking into account the above problems and the amount of computer time 
needed to obtain a reasonable spectrum (say, wavenumbers at intervals of 0.2 
between 0.8 and 2.2) another method was sought for solving the eigenvalue 
problem. However, once the fastest growing wave is located the techniques 
described could be used on high resolution grids to examine the structure of the 
mode and its transfer properties. 

14. CLASSICAL FORMULATION AND Q.R. ALGORITHM 

An alternative approach to solving the eigenvalue problem is to write down the 
finite-difference replacements to Eq. (6) and to solve the resulting algebraic set for c 
(the basic method used in [7] for the one-dimensional problem, though it was 
found convenient to use analytic methods for very long and very short wavelengths). 

With P’ as (@/L?z2 + N(P/ay2) - v”) and J&’ as LZ’LLZ + (y - NzA,,), (4) and (5) 
reduce to -PC+ = J&?# which, upon left-hand multiplication by P--l, reduces to 
JV$ = C$J where Jlr = Z-l&‘. This is now in the form of a classical eigenvalue 
problem, and an efficient method of solution is to use the Q.R. algorithm, [5, 151. 
(Note that the Q.R. method factorizes the matrix into the product of a unitary and 
upper triangular matrix. Repeated factorizations result, in the infinite limit, in a 
matrix, the diagonal elements of which are the eigenvalues of the original matrix.) 

For the matrix X (which is real), the eigenvalues are found by the Q.R. method 
using an IBM library routine and the corresponding eigenfunctions are found 
from the set of simultaneous equations using another IBM routine. The stream- 
function is normalized to +l at midchannel. 

The matrix JV (which is of order m x n: the total number of gridpoints) must 
be read into the computer explicitly, and thus, for reasons of storage, there is a 
limitation on the size of grid. For the grid used in the tests of Section 13 there were 
90 points for the symmetric mode and 81 for the antisymmetric mode. These 
numbers were of manageable proportion for the CDC 6400. 

15. A TEST USING THE Q.R. ALGORITHM 

The method was tested on the flow of Section 13(b) and the spectra obtained 
are shown in Fig. 12. The eigenvalues were obtained for all the modes and are 
exact in the sense that the only approximation arises from the truncation error. 
Only the two fastest growing modes are drawn for both the symmetric and anti- 
symmetric case. 
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FIG. 12. Growth rate (vci) and phase speed (cJ against wavenumber (v) by Q.R. algorithm. 
U = z exp(-2ye), L = 10,000 km, y  = 1. S is a symmetric mode; A is an antisymmetric mode. 

There is general agreement between Figs. 11 and 12 confirming the validity of 
the power method. There is a small difference between the corresponding growth 
rates of the secondary symmetric mode, probably due to an increased error in the 
time integration, and the failure to obtain this wave at wavenumbers other than 
v N 1.5 (due to its small growth rate) is confirmed. The computer time required 
to obtain the symmetric mode spectrum was 1500 set, and this was a great saving 
compared to the power method solutions. 

16. CONCLUSION 

The Q.R. approach has the great advantage of speed and precision, but is 
somewhat limited by storage problems. However, for the purpose of investigating 
the structure of perturbation solutions, useful sized grids can be accommodated. 

For treatment of finite amplitude waves this method is not available and some 
form of integration which is similar to the power method for small amplitudes must 
be used. Although the power series method of solving the potential vorticity 
equation is time consuming, it is possible to obtain solutions on high-resolution 
grids, taking into account the various convergence criteria and errors that appear 
and should not be discarded out-of-hand. (Recently, fast Fourier transform direct 
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methods have been analyzed and may alleviate some aspects of the spatial 
truncation that appear in the power method used in this paper.) 

The results may be summarized as follows. First, although it is advantageous 
to have as great a resolution as possible, there is an inherent limit to which we 
may go. Apart from the increased number of points required for increased 
resolution, the tolerance to which a solution must be obtained is proportional to 
the square of the vertical gridlength and so are the number of iterations required 
to reach this tolerance. For practical purposes there is some suggestion of an 
optimum of about eight levels. 

Second, it was found that there is a type of uncertainty principle connecting 
the time step, error in wave speed, and error in eigenfunction, and that the error 
in the eigenfunction is bounded by the product of the time step and error in the 
wave speed. 

Examining the truncation error, it was found that a 1% error in complex phase 
speed was possible, but that this accuracy could only be achieved if the finite 
difference problem was solved analytically, and an error larger than 1% must b 
expected for iterative solutions. 

A weakly unstable finite-difference scheme could be used for finding growing 
waves, and problems of degeneracy of solution could be eased by using a method 
whereby the time integration was terminated before all but one growing wave 
remained. 

The final result, and perhaps the most important, was that for a reasonably 
accurate complete spectrum to be obtained, the time integration methods were 
too clumsy and time consuming while the direct Q.R. method of solution was both 
efficient and accurate. The disadvantage here was one of computer storage for a 
large grid, but once the wavelength of the most dominant wave was found, the 
time integration method could be returned to for examination of the wave structure 
at high resolutions. 
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